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Algorithms for Scheduling Real-Time Tasks
with Input Error and End-to-End Deadlines

Wu-chun Feng, Member, IEEE, and Jane W.-S. Liu, Fellow, IEEE

Abstract —This paper describes algorithms for scheduling preemptive, imprecise, composite tasks in real-time. Each composite task
consists of a chain of component tasks, and each component task is made up of a mandatory part and an optional part. Whenever a
component task uses imprecise input, the processing times of its mandatory and optional parts may become larger. The composite
tasks are scheduled by a two-level scheduler. At the high level, the composite tasks are scheduled preemptively on one processor,
according to an existing algorithm for scheduling simple imprecise tasks. The low-level scheduler then distributes the time budgeted
for each composite task across its component tasks so as to minimize the output error of the composite task

Index Terms —Real-time systems and applications, scheduling, imprecise computation, error, end-to-end timing constraints.

——————————   ✦   ——————————

1 INTRODUCTION

HARD real-time system contains tasks which must
produce logically correct results within certain timing

constraints. In a system where the processing times of tasks
vary, transient overloads may be unavoidable. A hard real-
time system must remain robust and maintain an accept-
able level of performance under a transient overload. The
imprecise-computation technique [1], [2], [3], [4], [5] was
introduced as a way to deal with transient overloads. The
technique is motivated by the fact that one can often trade
off precision for timeliness. It prevents missed deadlines
and provides graceful degradation during a transient
overload by ensuring that an approximate result of accept-
able quality is available whenever the exact result cannot be
obtained in time.

The imprecise-computation model used in previous
studies [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15] assumes that the quality of a task’s result depends
solely on the time spent by the task to produce the result.
Specifically, the input of each task is free of error. If a task
terminates prematurely, the result produced by it contains
an error that is a nondecreasing function of the processing
time of the unexecuted portion. While this model ade-
quately characterizes many real-time applications, there are
several others that it does not. Examples include video
compression, speech recognition, and radar tracking. In
these applications, the quality of a result produced by a
task depends also on the quality of the input of the task.
When the results produced by some tasks are used as in-
puts by other tasks, the decision on how much of each task
to complete by what time in order for the set of dependent
tasks to produce a good overall result should not be made
by considering each task independently from the others.

In addition, previous studies on imprecise computation
focus on the case where the timing constraints of each task
are given. However, the timing constraints that can be de-
rived directly from high-level requirements are typically
not that of individual tasks, but rather are timing con-
straints of sets of tasks. We call such timing constraints end-
to-end timing constraints. The end-to-end timing constraints
over each set of tasks must be met. In contrast, the individ-
ual tasks in the set do not have any specific timing con-
straints, other than those imposed by the end-to-end timing
constraints. Thus, we have the freedom to advance and
postpone the executions of individual tasks. This freedom
gives us an added dimension in the tradeoff between result
quality and timing requirements.

In this paper, we extend the imprecise-computation
model to account for input error as well as the end-to-end
nature of the timing constraints. According to this model,
tasks which jointly support a function of the system are
dependent. The amount of time required to complete a suc-
cessor task depends on the quality of the result produced
by its predecessor task. Each set of dependent tasks forms a
composite task. Composite tasks are independent of each
other. The ready time and deadline of each composite task
are the end-to-end timing constraints of the component
tasks in it. We describe in this paper a two-level approach
to scheduling composite tasks. At the high level, the sched-
uler determines the total amount of time budgeted to each
composite task in order for all the composite tasks to meet
their deadlines. At the low level, the scheduler distributes
the time budgeted for each composite task to its component
tasks so as to minimize its output error. The high-level
scheduler can use one of several existing algorithms for
scheduling independent tasks with precise inputs to deter-
mine the time budgets of the composite tasks. We describe
here several heuristic algorithms which the low-level
scheduler can use to distribute time to component tasks.

The remainder of this paper is organized as follows: Sec-
tion 2 provides the background information needed for Sec-
tion 3, which describes the extended imprecise-computation
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model. Section 4 quantifies the effect of input error on the
processing time requirements and result quality of depend-
ent component tasks. Section 5 presents a set of heuristic
scheduling algorithms which attempt to optimize the overall
result quality of each composite task. Section 6 presents the
performance of these algorithms. Lastly, Section 7 summa-
rizes our results and presents future work.

2 BACKGROUND

Our model is built on the imprecise-computation model used
in previous studies [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15] which characterizes the workload on a real-
time system as a set of preemptable tasks T = {T1, T2, º, Tq}.
Each task Ti is logically decomposed into a mandatory part Mi
followed by an optional part Oi and has the following rational
parameters:

• ready time ri. The time at which task Ti is available for
execution,

• deadline di. The time by which task Ti must produce a
result

• processing time pi. The amount of processor time re-
quired to execute the task Ti to completion,

• mandatory processing time mi. The amount of processor
time required to execute the mandatory part Mi to
completion, and

• optional processing time oi. The amount of processor time
required to execute the optional part Oi to completion.

The mandatory part Mi must execute to completion in order
to produce an acceptable and usable result. The task Ti
meets its deadline if its mandatory part completes by its
deadline. The optional part Oi can only execute after the
mandatory part Mi completes. The optional part may be
terminated before it has completed, if necessary, so that the
task and other tasks can meet their deadlines.

Our attention is confined to uniprocessor systems. We let
fi denote the amount of processor time that is assigned to
execute the task Ti, according to a given schedule. A sched-
uling algorithm works correctly if it never schedules a task
before its ready time and if the total time fi it assigns to
every task Ti is no less than the mandatory processing time
mi. We let si = fi - mi be the amount of time remaining, after
the mandatory part Mi completes, for the execution of the
optional part Oi. si may be less than oi. Hereafter, by a
scheduling algorithm, we mean a correct algorithm, and by
a schedule, we mean a valid schedule in which mi £ fi £ pi.
We call a schedule in which every task Ti is assigned mi or
more units of time before its deadline a feasible schedule.

When the assigned processor time fi equals pi, or equiva-
lently si equals oi, the task Ti is said to be precisely scheduled.
Otherwise if fi < pi, the last portion of Ti with processing time
pi - fi is discarded. In a valid schedule, pi - fi, which is equal
to oi - si, is always equal to or less than oi. We call pi - fi the
amount of discarded work and
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the fraction of discarded work.1 Since fi is never in the range
[0, mi), the value of Fi in this range is irrelevant; it is as-
sumed to have the value of one for the sake of convenience.

Most existing algorithms [3], [4], [5], [7], [8], [9], [10],
[11], [12], [13], [14], [15] for scheduling tasks with optional
parts assume that the tasks are monotone. As a monotone
task executes longer, the quality of its results improves.
Hence, these algorithms seek schedules in which the frac-
tion of discarded work (or some function of this fraction) of
each task is as small as possible. Specific performance met-
rics commonly used by existing algorithms include
weighted average of the fractions of discarded work, sum
of the fractions of discarded work, maximum fraction of
discarded work, and number of discarded optional tasks.

The high-level scheduler described later in this paper
makes use of Algorithm G described in [5]. This optimal off-
line algorithm finds preemptive schedules of independent
tasks in which the maximum fraction of discarded work
among all tasks is as small as possible. This algorithm in turn
uses the optimal algorithm, developed earlier by Shih et al.
[11], for scheduling off-line preemptive tasks with arbitrary
ready times and deadlines to minimize the sum of the
amounts of discarded work over all tasks. While these algo-
rithms allow tasks to be dependent, the possibility of error
propagation across dependent tasks was not considered. Shih
and Liu [12] has since modified this algorithm to schedule
tasks on-line so that the sum of the amounts of discarded
work of all tasks accepted by the system is minimized.

The concept of trading off result quality for timeliness
has also been independently studied by the artificial intelli-
gence community. Dean and Boddy [16], [17] proposed the
use of anytime algorithms in the framework of time-
dependent planning and decision-making. The execution of
an anytime algorithm may be interrupted at any point to
return a result whose quality is solely a function of the
processing time of the completed portion. Therefore, a task
based on the anytime algorithm is an optional task in the
imprecise-computation model: The mandatory processing
time of such a task is zero.

Zilberstein [18], [19], [20] extended the work of Dean and
Boddy by introducing the concept of conditional performance
profiles. Conditional performance profiles represent result
quality as a function of input quality as well as the proc-
essing time spent to produce the result. The extended im-
precise-computation model described in the next section
resembles Zilberstein’s model in this way.

Musliner [21] introduced the concept of any-dimension al-
gorithms—a general class of iterative algorithms. This con-
cept generalizes the anytime algorithm concept by provid-
ing guarantees along dimensions other than time. Like an
anytime algorithm, an any-dimension algorithm is an itera-
tive algorithm with a termination condition which halts the
iteration when some threshold along that dimension is
reached. This aspect is not considered here.

Dey, Kurose, and Towsley [22] introduce the notion of
reward, which is analogous to error in the imprecise-
computation model or quality in anytime algorithms. They

1. In previous studies on imprecise computation, Ei was called the error
in the result of task Ti when the quality of the result was assumed to be a
linear function of the amount of discarded work.
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schedule tasks so that tasks receive increasing reward with
increasing service (IRIS). However, their model ignores the
dependency of result quality on input quality.

3 EXTENSIONS TO THE IMPRECISE-COMPUTATION
MODEL

We extend here the imprecise-computation model to char-
acterize applications where inputs provided to tasks may
be imprecise. In the extended imprecise-computation
model, a workload consists of a set of independent, pre-
emptable composite tasks T = {T1, T2, º, Tq}. In particular,
the input of each composite task is independent of the out-
put produced by other composite tasks. Each composite
task Tj consists of nj component tasks T T Tj j

n
j
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parameters pj, mj, and oj are the processing time, mandatory
processing time, and optional processing time of the com-
posite task Tj, respectively. They are equal to the sums of
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essing time, and optional processing time of component
task Ti

j .
We focus our attention on the type of composite tasks

whose component tasks have linear precedence-constraint
graphs. The (end-to-end) ready time rj of the composite task

Tj is the ready time of its first component task Ti
j . T1

j can

begin execution at rj. Ti
j can begin execution only after Ti

j
-1

completes for i = 2, 3, º, nj. Ti
j  is the (immediate) successor

of Ti
j
-1 , and the output of Ti

j
-1 is the input of Ti

j . The output

of the last component task Tn
j
j
 is the output of the compos-

ite task. The (end-to-end) deadline dj of Tj is the deadline its

last component task Tn
j
j
. The ready times and deadlines of

the intermediate component tasks T T Tj j
n
j
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specified. To capture the end-to-end nature of the timing
constraints, we assign the ready times and deadlines of the
component tasks to be the same as that of the composite
task. This gives us the maximum flexibility in scheduling
the component tasks.

Most of this paper deals with the scheduling of compo-
nent tasks within a given composite task. When there is no
ambiguity, we simplify our notation by dropping the su-
perscript j from the component tasks T T Tj j

n
j

2 3, , ,K  of the

composite task Tj and simply call them tasks T1, T2, º Tn.
We assume that all of the component tasks are monotone.

When a component task Ti-1 is terminated before it is
completed, its output contains an error Ei-1, which is the
input error ei of its successor task Ti. One effect of the input
error ei is that the mandatory part Mi of Ti may be extended
in the sense that it now takes an additional Hi(ei) units of
processor time beyond mi for Ti to produce an acceptable
result. We call the Hi(ei) additional time units of the man-
datory part the mandatory extension of Ti, and the concate-

nation of the mandatory part Mi and the mandatory exten-
sion the extended mandatory part ¢Mi . The amount of proces-
sor time needed to execute ¢Mi  to completion is given by

¢mi  = mi + Hi(ei). Throughout this paper, we assume that the
mandatory extension Hi(ei) is a monotone nondecreasing
function of the input error ei and Hi(0) = 0. Since every
component task is monotone, the input error ei of the task Ti
is a monotone nondecreasing function of the fraction of
discarded work Fi-1 of the predecessor task Ti-1. Conse-
quently, the mandatory extension of Ti is a monotone non-
decreasing function of Fi-1. With a slight abuse of notation,
we denote this function by Hi(Fi-1), for i = 2, 3, º, n. The
mandatory extension of Ti is zero if its predecessor task Ti-1
is assigned pi units of time, i.e., Fi-1 = 0, and Hi(0) = 0 for all
i. We assume that the input error e1 to the first component
task in every composite task is zero, and hence H1(e1) = 0.

The effect on the processing time of the mandatory part
can be illustrated by Newton’s root-finding method. Sup-
pose that the processing time of the mandatory part is the
time it takes to find a root within 10% of the actual root,
and the processing time of the optional part is the time it
takes to refine the result of the mandatory part to be within
0.1% of the actual root. Obviously, if the input to Newton’s
method is poor (i.e., the predecessor component task pro-
vides an input value which is far from the actual root), the
mandatory part must execute longer in order to meet the
10% threshold. This effect is accounted for by the manda-
tory extension. The optional part stays the same.

Similar examples of extending the mandatory part occur
in image and video processing as well. Suppose that the
processing time of the mandatory part is the time it takes to
display (on a client workstation) a video frame of accept-
able quality, and the processing time of the optional part is
the time it takes to further enhance the visual quality of the
video frame. If during the transmission of a frame to the
client, some packets are lost or corrupted; the client must
do some image enhancement, and the mandatory part of
displaying the video frame is extended correspondingly in
order to bring the quality of the video frame up to accept-
able standards.

Another possible effect of input error on a task Ti is that
the processing time of the optional part Oi is lengthened.
Based on the same argument above, the processing time of
the optional part Oi of Ti is extended by Ki(Fi-1) time units to
offset the effects of the input error, where Ki(x) is a mono-
tone nondecreasing function of x and Ki(0) = 0. The Ki(Fi-1)
additional time units of the optional part make up the op-
tional extension, and the juxtaposition of the optional part Oi

and the optional extension is the extended optional part ¢Oi .
The amount of processor time needed to execute ¢Oi  to
completion is given by ¢oi  = oi + Ki(Fi-1) for i = 2, 3, º, n, and

¢oi  = o1 because K1(0) = 0.
Radar tracking is an example of an application where

extending the optional part is necessary to compensate for
input error. The mandatory part consists of processing the
returned radar signal and creating track records by a signal
processor. Each track record indicates position and direc-
tion of movement of a possible target. The optional part
tries to associate these targets with established tracks by a
data processor. If the returned radar signal is weak and
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noisy, the amount of time required to process the signal
remains more or less the same (i.e., the processing time of
the mandatory part stays the same). However, there may be
more false returns—records associated with nonexistent
targets. As a result, the data processor must spend addi-
tional processing time in associating tracks.

In general, both the mandatory part Mi and the optional
part Oi may be extended when a fraction Fi-1 of the optional
part Oi-1 is discarded and hence the input error ei is nonz-
ero. Specifically, the mandatory part Mi is extended by
Hi(Fi-1) and the optional part Oi by Ki(Fi-1). An infinite value
of Hi(Fi-1) means that the input error ei of Ti has a fatal effect
on Ti: Ti can never produce an acceptable result no matter
how long it executes. Similarly, if Ki(Fi-1) is infinite while
Hi(Fi-1) is finite, the effect of input error can never be erased
by executing the optional part ¢Oi  longer and longer, al-
though the result produced by Ti is acceptable. Hereafter,
we will refer to Hi(Fi-1) and Ki(Fi-1) as the mandatory and
optional extension functions, respectively.

4 EFFECTS OF INPUT ERROR

Again, we consider here composite tasks whose prece-
dence-constraint graphs are linear. For such a composite
task, its output error is equal to the output error of the last
component task, which, in turn, depends on the output er-
rors of its predecessor component tasks.

Let Fj denote the total amount of processor time as-
signed to a composite task Tj by the high-level scheduler.
The heuristic algorithms for distributing the total time Fj to
the component tasks attempt to keep the fraction of dis-
carded work Fn of the last component task, and hence the
output error En of this component task and the composite
task, as small as possible.

The algorithms presented in subsequent sections are
near optimal when the mandatory extension and optional
extension of every component task Ti are linear functions of
the fraction of discarded work Fi-1 of its immediate prede-
cessor Ti-1. In particular, they assume that the extension
functions of Ti are

H F h F i ni i i i( ) for , , ,- -= =1 1 2 3 K              (1)
K F k F i ni i i i( ) for , , ,- -= =1 1 2 3 K              (2)

where hi is the mandatory error-scaling factor and ki is the op-

tional error-scaling factor of Ti. However, the assumption on

the linearity of Hi(Fi-1) and Ki(Fi-1) is not valid in general.
We will return in Section 5 to discuss how to approximate

arbitrary functions Hi(Fi-1) and Ki(Fi-1) by linear functions.
Throughout this section, we assume that the mandatory

and optional extensions of component tasks T2, T3, º, Tn
are given by (1) and (2)). The mandatory and optional ex-
tensions of the first component task T1 of a composite task
are zero since the input of a composite task is assumed to
be error-free. We first derive the expression for the fraction
of discarded work of the last component task, as a function
of the amounts of time assigned to the earlier component
tasks for the special case where the optional error-scaling
factors ki are zero; that is, ki = 0 for all i = 1, 2, º, nj. We
then consider the special case when the mandatory error-

scaling factors hi are zero. The expressions for the fraction
of discarded work of Ti in terms of that of its predecessors
will provide clues as to how to distribute the amount of
time Fj that is assigned to the composite task Tj to its com-
ponent tasks when the mandatory and optional extensions
of all component tasks are given by (1) and (2)).

When the mandatory error-scaling factor hi is nonzero
and the optional error-scaling factor ki is zero, the amount
of time fi assigned to each component task Ti must be in the
range [mi + hiFi-1, mi + hiFi-1 + oi] so that its extended-
mandatory part ¢Mi  can execute to completion. With fi con-
strained to this range, the fraction of discarded work of Ti is
a linearly decreasing function of fi, as illustrated by the
dotted line in Fig. 1 and stated by the following lemma.

Fig.1. An extended imprecise-computation model.

LEMMA 4.1. The fraction of discarded work Fi of a component task
Ti whose optional error-scaling factor ki is zero is given by

F o m h Fi
i

i i i i= - - - -1
1

1( )f

where mi + hiFi-1 £ fi £ mi + hiFi-1 + oi, when it is assigned
fi units of time and the fraction of discarded work of its
predecessor is Fi-1.

PROOF. The lemma follows directly from the property of
similar triangles.
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As an example, if fi = mi + hiFi-1, then there is only
enough time to execute the extended-mandatory part ¢Mi ,
and the optional part Oi is left unexecuted. As a result, Fi =
1. In general, the fraction of discarded work Fn of a com-
posite task consisting of n component tasks is given by the
following theorem.

THEOREM 4. For a composite task with n component tasks whose
optional error-scaling factors are zero, the fraction of dis-
carded work Fn of the last component task Tn is given by

F C a a an n n n= - - - -1 1 2 2f f fL                (3)

where fi is the amount of time assigned to the component
task Ti for i = 1, 2, º, n, Cn is the constant
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PROOF. By Lemma 4.1, for a composite task consisting of
one component task, its fraction of discarded work is
given by
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For a composite task consisting of a chain of two
component tasks, the fraction of discarded work F2 of
T2 is equal to
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Suppose that the amount of discarded work Fn-1
for a composite task consisting of a chain of n-1 com-
ponent tasks is
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Then, the amount of discarded work Fn for a compos-
ite task with n component tasks is
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Similarly, when the mandatory error-scaling factor hi of
a component task Ti is zero but the optional error-scaling
factor ki is nonzero, the value for fi must be in the range
[mi, mi + ¢oi ], where ¢oi  = oi + kiFi-1 is the processing time of
the extended-optional part.

LEMMA 4.2. The amount of discarded work Fi for a component
task Ti whose mandatory part has an error-scaling factor hi
of zero is given by

F
m

o k F o k Fi
i i

i i i

i

i i i
= -

-
+ = - +- -

1 1
1 1

f s

where mi £ fi £ mi + oi + kiFi-1, when it is assigned fi units
of time and the fraction of discarded work of its predecessor
is Fi-1.

PROOF. Using Fig. 1, the lemma follows directly from the
property of similar triangles.
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THEOREM 4.2. For a composite task with two or more component
tasks whose mandatory error-scaling factors hi are zero, the
fraction of discarded work Fi of component task Ti is given by
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where si-1 and si are the amounts of time assigned to the
optional parts of Ti-1 and Ti, respectively, and Fi-2 is the
fraction of discarded work of Ti-2.

PROOF. From Lemma 4.2,
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5 HEURISTIC SCHEDULING ALGORITHMS

We now describe a high-level algorithm for scheduling
composite tasks and determining the total amount of time
assigned to each task. We then focus on low-level algo-
rithms for distributing the time assigned to each composite
task among its component tasks. These algorithms make
use of the expressions derived in the previous section to
decide how the total amount of time assigned to each com-
posite task should be distributed among its component
tasks so as to minimize the output error En for the compos-
ite task. Because the low-level algorithms compute the
amounts of time given to the component tasks based on
their error-scaling factors, we also present a method for
extracting the error-scaling factors.

5.1 High-Level Scheduling of Composite Tasks
Since the composite tasks are independent, the quality of
the result produced by a composite task is independent of
the amounts of time assigned to other composite tasks.
Therefore, the problem of scheduling a set of preemptable
composite tasks reduces to the problem of scheduling a set
of independent preemptable tasks.

Fig. 2 gives a pseudocode description of an algorithm,
called S-COMPOSITE, for scheduling composite tasks. (In
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this figure, we use hj to denote the sum 
i
n

i
jj h=1S ; it is the

maximum extended-mandatory processing time.) This al-
gorithm makes use of a modified version of the earliest-
deadline-first algorithm (M-EDF), described in [11], and
Algorithm G, described in [15]. The M-EDF algorithm treats
every composite task as if it were entirely optional and
schedules the composite tasks on an earliest-deadline-first
basis. It never schedules any composite task after its dead-
line. In other words, every composite task is terminated at
its deadline if it is not completed. It has been shown in [11]
that the M-EDF algorithm minimizes the total processing
time of the discarded portions of all tasks. Algorithm G
distributes the total available processor time as evenly as
possible among the tasks. Specifically, for a given set of
ready times and deadlines, this algorithm makes the frac-
tion of discarded work of the composite task (i.e., the ratio
of the processing time of the unexecuted portion of each
composite task to the total optional processing time of all
the component tasks in it) as equal as possible to that of the
other composite tasks.

Input:
 (a) The ready time rj and deadline dj of every composite

task Tj in T.
(b) The total processing time pj = mj + oj and the maximum

extended-mandatory processing time m¢j = mj + hj.
(c) The parameters mi

j, oi
j, hi

j, and ki
j of every component

task in every composite task in T = {T1, T2, …, Tn}

Output:
A feasible schedule of T or a feasible schedule of a subset
of T and the list of composite tasks that cannot be feasibly
scheduled.

1. (a) For each composite task Tj, j = 1, 2, …, q, set the pro-
cessing time Pj of Tj to pj.

(b) Use the M-EDF algorithm to find a schedule of
{T1, T2, …, Tq}.
If the resultant schedule is a precise schedule then
     The output error of every composite task is 0.
     Done.

2. (a) For j = 1, 2, …, q, if Pj > m′j

           Then set Pj = m′j.
(b) Use the M-EDF algorithm to find a schedule of
            {T1, T2, …, Tq}.
      If the resultant schedule is a precise schedule then
            Set Φj = Pj for j = 1, 2, …, q. Go to Step 4.

3. Use Algorithm G to schedule T.
Φj = the total amount of time assigned to Tj according
        the resultant schedule for each composite task in T.

4. (a) For every j, use one of the distribution algorithms to
distribute the time Φj assigned to Tj among its compo-
nent tasks.

(b) Report all infeasible composite tasks and the processing
time distribution of all feasible composite tasks.

Fig. 2. Algorithm S-COMPOSITE.

Algorithm S-COMPOSITE has four steps. In Step 1, it
tries to schedule every composite task Tj precisely. If this
step succeeds in finding a precise schedule, the output er-
rors of all the composite tasks are zero, and each compo-
nent task Ti

j  is assigned m oi
j

i
j+  units of time. If Step 1 fails

to find a precise schedule of T, no precise schedule of T
exists [11]. Step 2 then tries to precisely schedule every

composite task whose optional processing time oj is small
compared to its maximum extended-mandatory processing
time. It does so in Step 2(a) by reducing the amounts of
time assigned to tasks which have relatively large optional
processing times. If, in Step 2(b), the M-EDF algorithm
finds a precise schedule with this reduction, the composite
tasks with small optional processing times are scheduled
precisely and have zero output errors. Each composite task
whose optional processing times oj is larger than its maxi-

mum extended-mandatory processing time ¢m j  is assigned
a sufficient amount of time to ensure the feasible distribu-
tion of its time among its component tasks.

On the other hand, if Step 2(b) fails, we do not know
whether we can feasibly schedule T until we distribute the
time Fj assigned to each composite task to its component
tasks. Step 3 is carried out and finds Fj in such a way that
the processing times of the unexecuted portions of all com-
posite tasks, measured in terms of fractions of their proc-
essing times, are as equal as possible under the constraints
imposed by the ready times and deadlines of the composite
tasks. Step 4 is then invoked to distribute this time to the
component tasks.

For example, suppose that there are two composite tasks
with the following parameters:

Task m o m′ r d

T1 15.0 14.0 26.4 0.0 28.5
T2 45.0 42.0 88.0 27.0 112.0

Fig. 3 shows the three schedules of the composite tasks
produced in Steps 1, 2, and 3 of Algorithm S-COMPOSITE.
Because the schedules produced in Step 1 and Step 2 are
not precise, Step 3 is carried out, and the fractions of unexe-
cuted optional portions of both tasks are equal to 1/14. The
times assigned to these tasks are F1= 28 and F2 = 84. The
processing times of the unexecuted portions of T1 and T2

are 1 and 3, respectively.
Later, we will expand this example and show that the

algorithm used in Step 4 can find a way to distribute the 28
units of time assigned to T1 such that the output error is
zero and the total time used by its component tasks is less
than 28. The results produced by Step 4 include the amount
of unused time for each feasibly scheduled composite task
and the additional amount of time required for each infea-

Fig. 3. An example to illustrate Algorithm S-COMPOSITE.
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sibly scheduled composite task. We can improve the chance
for Algorithm S-COMPOSITE to find a feasible schedule of
T when it fails by carrying out Step 3 and Step 4 again. In
the second iteration, the amount of time used by each com-
posite task that is feasibly scheduled in Step 4 in the first
iteration is considered to be mandatory. Similarly, the
amount of time required by each composite task that is not
feasibly scheduled in Step 4 is used as the mandatory proc-
essing time of the task in the second iteration.

The time complexity of Steps 1 and 2 is O(q ln q). The
time complexity of Step 3 is O(q3). The algorithms for dis-
tributing time to the component tasks have time complexity
O(n). Hence, the time complexity of Algorithm
S-COMPOSITE is O(nq + q3).

5.2 Low-Level Scheduling to Distribute Processor
Time

The F units of time assigned to a composite task T must be
distributed to its n component tasks in such a way that the
following constraints are satisfied.

F = + + +f f f1 2 L n                              (6)
m h F m h F o k Fi i i i i i i i i i+ £ £ + + +- - -1 1 1f                (7)

We present here five algorithms for this distribution. (Since
it is no longer necessary for us to keep track of different
composite tasks, we again drop the superscript to simplify
our notation.)

Algorithms DIST-M, DIST-M+, and DIST-M+-ITERATIVE
make decisions on the amount of time given to component
tasks based primarily on their mandatory error-scaling fac-
tors. They are more suited when the processing times of the
mandatory extensions of the component tasks are large com-
pared to the processing times of the optional extensions. In
contrast, Algorithms DIST-O and DIST-O+ take into account
the effect of the optional error-scaling factors on the output
error of the composite task. They should perform better than
DIST-M, DIST-M

+
, and DIST-M

+
-ITERATIVE when the proc-

essing times of the optional extensions are large in compari-
son to the processing times of the mandatory extensions.

5.2.1 Algorithm DIST-M
Fig. 4 gives the pseudocode description of Algorithm DIST-
M, an algorithm which distributes processor time to com-
ponent tasks based solely on the mandatory error-scaling
factor; Theorem 4.1 provides the rationale of this algorithm.
According to this theorem, when the optional error-scaling
factors of all the component tasks are zero (i.e., ki = 0 for i =
1, 2, º, n), the fraction of discarded work Fn is a linear
function of the times fi s assigned to its component tasks.
Since the constraints (6) and (7) on the fi s are also linear,
the problem of finding an assignment {fi} (i.e., the set of
times assigned to component tasks) to minimize Fn, and
hence the output error En of the composite task, is a linear-
programming problem in this special case. We can use a
linear-programming package to find {fi} if the scheduling is
done off-line. However, when ki π 0, the assignment {fi}
thus found is not optimal and, as we will see later, may not
even be feasible. Algorithm DIST-M and its variances offer
better alternatives with lower scheduling overhead because
its time complexity is O(n).

Input:
(a) The parameters mi, oi, hi, and ki for all n component tasks
(b) The total time F assigned to the composite task.

Output:
A feasible assignment {φi} of time to the component tasks and the
amount of unused time U, or a report on the failure to find a fea-
sible schedule and the additional time required.

1.   If Φ ≥ 
i

n

=1S  (mi + oi) then

Schedule component tasks precisely by setting

   fi = mi + oi for i = 1, 2, 3, …, n and En = 0.

   Done.

2.   Set φ1 = m1 and φi = mi + hi for i = 2, 3, …, n – 1.

If Φ – 
i

n

=

-

1

1S  φi ≥ mn + hn + on + kn then

   Set φn = mn + hn + on + kn.

   Report U = Φ – 
i

n

=1S  φi.

   Done.

3.   Set F0 = 0 and Fi-1 = 1 for i = 2, 3, …, n
Compute ai s from hi s and oi s for i = 1, 2, …, n,
   according to (4).
Sort ai s in nonincreasing order and put them in the list L.
While L is not empty do
   x = index of the largest ai in L
   If Tx+1 is marked and x ≠ n then
      φx = mx + hxFx-1
   Else φx = mx + hxFx-1 + ox + kxFx-1
   Mark Tx and remove ax from L.

4.   Compute the amount of unused time U = Φ – 
i

n

=1S φi.

If U < 0, then set

   φ1 = m1, φi = mi + hi for i = 2, 3, …, n – 1

   φn = F – 
i

n

=

-

1

1S  φi

   If φn < mn + hn then

      Report that the algorithm fails and that the amount of

         additional time required is

      min (mn + hn – φn, – U).

Else report unused amount of time U and {φi}.

Fig. 4. Algorithm DIST-M.

More specifically, Algorithm DIST-M has four steps. The
first two steps try to find a feasible assignment in which Tn is
scheduled to yield a zero output error. If these two steps fail,
Step 3 tries to find a good assignment with a small fraction of
discarded work Fn. To see the rationale behind this step, we
assume for the moment that ki = 0 for all i. From the expres-
sion of Fn in Theorem 4.1, we see that this fraction is mini-
mized by choosing the values of fi in the following way: The
larger the coefficient ai in the sum given by (3), the larger the
value of fi. Unfortunately, because of constraints (6) and (7),
this choice of fi is not always possible. Because of these con-
straints and the fact that the ki s are not zero, Step 3, and
hence Algorithm DIST-M, is not optimal.

Step 3 tries to find an assignment which yields a small
fraction of discarded work Fn by making locally optimal or
near-optimal decisions as follows. It begins by making the
value of fx, which has the largest coefficient ax among all ai s
in (3), as large as possible. From (4), we see that ax > ax+1
means hx+1 > ox. In other words, the processing time of the
optional part of Tx is smaller than the processing time of the
maximum mandatory extension of Tx+1 when the entire op-
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tional part of Tx is left unexecuted. Therefore, fx is made suf-
ficiently large so that Tx can execute to completion. Similarly,
because ax > ax-1, and hence hx < ox-1, less time is required to
execute the maximum mandatory extension of Tx than the
optional portion of Tx-1. Therefore, fx-1 is chosen so only the
extended-mandatory portion of Tx-1 completes. This process
is repeated until the values of all fi s are chosen.

Step 4 checks whether the assignment {fi} produced in
Step 3 is feasible for the total time F assigned to the compos-
ite task. If the total time required by {fi} exceeds F, then an-
other attempt to find a feasible assignment is made to pro-
duce a schedule with the minimum allowable output error.
The algorithm fails if this assignment is also infeasible. As a
result of Step 4, the amount of time not used by a feasible
assignment {fi} or the additional amount of time needed for a
feasible assignment is reported. The high-level scheduler can
make use of this information to reallocate time among com-
posite tasks, e.g., by giving the time not required by one
composite task to one(s) that requires more time.

As an illustrative example, we consider the composite
task T1 in Fig. 3 which consists of a chain of four component
tasks: T1, T2, T3, and T4. (We again suppress the super-
script.) The parameters of the component tasks are:

Task m h o k
T1 6.4 0.4 5.0 0.0
T2 4.0 4.0 2.0 0.0
T3 1.0 5.0 3.0 0.0
T4 4.0 2.0 4.0 0.0

The total amount of time assigned to T1 is 28. T1 cannot be

precisely scheduled and executed because 
i
n
=1S  (mi + oi) = 29.

Hence, Step 1 of Algorithm DIST-M fails to find an assign-
ment that yields zero output error. Step 2 assigns f1 = 6.4,

f2 = 8.0, and f3 = 6.0 units of time to T1, T2, and T3, respec-

tively. The remaining time F - 
i=1
3S  fi = 7.6 is insufficient for

T4 to execute to completion. Consequently, Step 3 is carried
out. Because a4

1
4= , a a3

2
3 4

1
6= ¥ = , a a2

5
2 3

5
12= ¥ = ,

and a a1
4
5 2

1
3= ¥ = , we have a2 > a1 > a4 > a3. In the first

iteration, f2 = m2 + h2 + o2 = 10.0 is set, and T2 is marked. The

fraction of discarded work F1 of T1 is 1, and the fraction of

discarded work F2 of T2 is 0. In the second iteration, a1 is the

largest entry. Because T2 is marked and F1 = 1, f1 is set to m1

= 6.4. In the third iteration, a4 is the largest, and thus f4 is

chosen to be m4 + h4 + o4 = 10. Because F2 = 0 and F3 = 1 in

the fourth iteration, the time required by T3 is m3 = 1. Since

i=1
4S  fi = 6.4 + 10.0 + 1.0 + 10.0 = 27.4, the amount of unused

time is 0.6 units, and the fraction of discarded work F4 of T4 is
zero. Consequently, the output error is zero.

5.2.2 Extensions of Algorithm DIST-M
While Algorithm DIST-M strictly follows Theorem 4.1 when
making scheduling decisions, Algorithm DIST-M+ only uses
it as a guide. The conceptual difference between the two al-
gorithms is in Step 3. Unlike Algorithm DIST-M, Algorithm

DIST-M+ does not make its scheduling decisions based solely
on the ai s. The DIST-M+ algorithm goes one step further by
checking to see if the total execution time of the pair of tasks
Ti and Ti+1 is shortened or lengthened by giving the task Ti
more processing time. If it is shortened, then task Ti is as-
signed more time; otherwise, it is only allocated enough time
to execute the extended-mandatory part. Steps 1, 2, and 4 of
this algorithm are the same as the corresponding steps of
Algorithm DIST-M; its Step 3 is described in Fig. 5. We note
that the purpose of “marking” in this algorithm is different
from that in Algorithm DIST-M. Here, a marked task is a task
whose fraction of discarded work is zero.

3.   Set F0 = 0 and Fi-1 = 1 for i = 2, 3, …, n.

Compute ai s from hi s and oi s for i = 1, 2, …, n,
     according to (4).
Sort ai s in nonincreasing order and put them in the
     list L.
While L is not empty do
     x = index of the largest ai in L

     If Tx+1 is marked and x ≠ n then

          If ¢ox  > hx+1 Fx + kx+1 Fx then

               φx = mx + hxFx-1

              φx+1 = mx+1 + hx+1Fx + ox+1 + kx+1Fx

          Else
               φx = mx + hxFx-1 + ox + kxFx-1

              φx+1 = mx+1 + ox+1

              Mark Tx

     Else /* Tx+1 is unmarked */

          If ¢ox  > hx+1 Fx then

              φx = mx + hxFx-1

             φx+1 = mx+1 + hx+1Fx

         Else
             φx = mx + hxFx-1 + ox + kxFx-1

            φx+1 = mx+1

            Mark Tx

      Remove ax from L.

Fig. 5. Step 3 of Algorithm DIST-M
+
.

The amounts of time required to complete the compo-
nent tasks may change during the execution of Algorithm
DIST-M+. If Algorithm DIST-M+ is applied iteratively, it
will produce a schedule as good as or better than a sched-
ule produced by a single pass of Algorithm DIST-M+.
Therefore, Algorithm DIST-M+-ITERATIVE repeatedly ap-
plies Algorithm DIST-M+ until there are no more changes to
the schedule.

5.2.3 Algorithm DIST-O
When the processing times of the mandatory extensions are
small compared to the processing times of their optional ex-
tensions, we expect that DIST-M and its variances are un-
likely to perform well. Algorithm DIST-O offers an alterna-
tive. The algorithm consists of three steps. Its first two steps
are identical to the first two steps of Algorithm DIST-M; its
Step 3 is described in Fig. 6.
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Step 3 is carried out when Step 2 fails. In other words,
after mi + hi units of time have been assigned to each of

the earlier component tasks Ti, the remaining time F -

i
n
-
-
1
1S  (mi + hi) is insufficient for the last component task Tn

to complete. The decision that must be made is whether to
assign this time to Tn or an earlier component task or to
divide the time between the component tasks in some
manner.

After Step 2,
φ1 = m1
φi = mi + hi for i = 2, 3, …, n – 1

Step 3

Set φn = Φ – 
i

n

=

-

1

1S  φi.

If φn < mn + hn then
     Report failure to find a feasible assignment and that

          the additional time required is mn + hn – fn.
          Done.
Else
     y = φn - mn – hn

If y > ¢ ¢
-o o k

n n n1
/  then

     sn-1 = min(on-1 + kn-1, y)

     φn-1 = φn-1 + σn-1

     φn = φn - σn-1

      Report {φi}. Done.

Fig. 6. Step 3 of Algorithm DIST-O.

Algorithm DIST-O is based on the expression of output
error given by (5). Like Algorithm DIST-M, the decision
made by Algorithm DIST-O is only locally optimal. To un-
derstand the reasoning behind the choices made by Step 3,
let y = F - 

i

n

=

-

1

1S  (mi + hi) and y > 0. We suppose that the y
units of time is divided evenly between Tn and Tn-1. Ac-
cording to (5), the fraction of discarded work Fn is given by

F y o
k y
on n
n

n
= - ¢ - ¢

L
NM

O
QP

F
HG

I
KJ-

1 2 2 1
/

where again ¢ = +o o kn n n  and ¢ = +- - -o o kn n n1 1 1 . We now ask

whether Fn can be reduced by assigning y + d units of time

to Tn for d > 0 at the expense of Tn-1. This question is
equivalent to whether the inequality

y
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o
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is true. A simple algebraic manipulation shows that this
inequality holds if

y
o o

k
n n

n
<

¢ ¢ -1

In this case, it is better to give all the remaining time y to Tn.
Otherwise, we give more time to the earlier component task
Tn-1.

5.2.4 Algorithm DIST-O+

The decision made in Algorithm DIST-O is good only when
the processing times of the maximum mandatory exten-
sions of the component tasks are fairly small. In general, we
may be able to reduce the output error by distributing
the available time to earlier component tasks. Algorithm
DIST-O+, an enhanced version of Algorithm DIST-O, serves
this purpose. This algorithm tries to divide the processing
time across all the component tasks; the algorithm is identi-
cal to Algorithm DIST-M except that the heuristic guide ai

in Step 3 is calculated differently.
The choice of ai is motivated by the expression in (5). Ac-

cording to this equation, when the mandatory error-scaling
factors of all the component tasks are zero (i.e., hi = 0 for i =
1, 2, º, n), a component task whose optional error-scaling
factor and optional processing time are smaller than those
of the successor task should be given more time than the
successor task when the fraction of discarded work of its
predecessor is sufficiently small. Otherwise, the successor
task should be given more time. Consequently, we choose ai
to be oi+1 ki+1 /oi ki for i = 1, 2, º, n.

5.3 Extracting Error-Scaling Factors
The low-level algorithms for distributing time to compo-
nent tasks require as input parameters the error-scaling
factors of the component tasks. These algorithms cannot be
applied directly to component tasks whose extension func-
tions are not in the linear form given by (1) and (2). We now
describe how to transform a given set of component tasks
with arbitrary mandatory and optional extensions to an-
other set with linear mandatory and optional extensions
and thus find the error-scaling factors.

Without loss of generality, suppose that the given man-
datory and optional extensions (denoted by H Fi

g
i( )-1  and

K Fi
g

i( )-1 , respectively) of a component task Ti are as shown
by the dotted curves in Fig. 7a and 7b, respectively. We ap-
proximate each given extension function by two straight-
line segments; both segments lie entirely above each exten-
sion function. These straight-line segments give an upper
bound of the values of the extension function at all values
of Fi-1. A valid, feasible schedule based on such straight-line
approximations of the extension functions is surely a valid,
feasible schedule for the given extension functions.

Specifically, one of the two straight lines is the vertical one
at fm (or fo), where 0 < fm £ 1 (or 0 < fo £ 1). We call fi = min(fm, fo),
the discard threshold of task Ti. The task Ti can never produce a
precise result when more than fi fraction of the optional task
Oi-1 of Ti-1 is left unexecuted. We want to ensure that this con-
dition never occurs for any component task. For this reason,
 if fi < 1, we increase the mandatory processing time of Ti-1 by
(1 - fi) oi

g
-1and decrease the optional processing time of Ti-1 by

(1 - fi) oi
g
-1, where oi

g
-1 denotes the given optional processing

time of Ti-1. In other words, we transform the predecessor task
Ti-1 into one whose mandatory and optional processing times
are given by

m m f o

o o f o
i i

g
i i

g
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where mi
g
-1 is the given mandatory processing time of Ti-1.

Our algorithms work with the transformed parameters mi-1

and oi-1, not the corresponding given parameters.
The allowed range of the fraction of discarded work Fi-1,

based on the computed value oi-1 is [0, 1]. Adopting the
straight-line segments with finite slopes in this range, we
have the following approximate extension functions:

H F XF

K F YF
i i i

i i i

( )

( )

=
=

-

-

1

1

where X and Y are the values defined in Fig. 7. Hence, hi =
X and ki = Y. Hereafter, we assume that the characteristics
of all component tasks are first analyzed, and then the pa-
rameters mi, oi, hi, and ki of every component task Ti in
every composite task are derived from the given mandatory
and optional processing times and extension functions in
the manner described above.

Fig. 7. Extension functions.

6 PERFORMANCE

We ran a suite of simulation experiments to evaluate the per-
formance of Algorithms DIST-M, DIST-M+, DIST-M+-
ITERATIVE, DIST-O, and DIST-O+. For convenience, we call
the five algorithms collectively as DIST-* algorithms. In each
experiment, we randomly generated a composite task and
each of its component tasks. For each component task, the
mandatory and optional processing times (i.e., mi and oi) and
the mandatory and optional error-scaling factors (i.e., hi and
ki) were randomly chosen from their respective probability
distributions; we isolated the effect of these parameters by
keeping all other parameters fixed. (For example, the number
of component tasks in a composite task was fixed at 8.) For

each composite task, the parameters mi, hi, oi, and ki of each
component task Ti were chosen from either uniform distri-
butions or bimodal distributions. We then applied the five
algorithms on each composite task and found the fractions of
discarded work of the last component task produced by
them. For a given algorithm, the lower the fraction of dis-
carded work, the better the performance.

6.1 Uniform Distribution
Table 1 shows the performance of the DIST-* algorithms
found in four representative experiments where the pa-
rameters mi, hi, oi, and ki of each Ti were all chosen from uni-
form distributions. Each column corresponds to a composite
task whose component-task parameters are selected from
either the uniform distribution in the range [0, 10) or the uni-
form distribution in the range [0, 100). We call the distribu-
tion with the range [0, 10) to be the “small” uniform distribu-
tion. So, when the parameter hi of all component tasks are
chosen from the “small” distribution and mi, oi, and ki from
the larger distribution, namely the one with range [0, 100),
we label the appropriate column with “small h” as exempli-
fied by the second column of each experiment in Table 1.

The numerical entries in Table 1 are either in roman or
italic font. The first two steps of all five DIST-* algorithms are
the same; these steps try to find a feasible scheduling as-
signment which yields zero output error. When either Step 1
or 2 succeed, the results are listed in roman font. If either of
these steps fail, then the succeeding steps distinguish the in-
dividual DIST-* algorithms. The results for the composite
tasks which benefit from these distinguishing steps are in
italics. If none of the steps result in a feasible schedule, then
the composite task is said to be unschedulable (uns).

When the expected values of the hi parameters are
small, the five algorithms perform almost identically.
Small hi parameters imply that compensating for the input
error of a component task can be much cheaper timewise
than scheduling its predecessor tasks precisely. As a re-
sult, the best approach to schedule these types of tasks in
general is to schedule only the extended mandatory parts
of all but the last component task and then compensate
for the accumulated error by giving the last component
task as much time as possible. This approach is what Step
2 of all the DIST-* algorithms does, thus explaining the
near-identical performance.

The only instance where the algorithms do not perform
identically when hi are small is when oi and ki are small as
well. In this case, the approach described above takes about
as much time as scheduling the component tasks precisely
because all the optional parameters are small. In other
words, the time given to the last component task to com-
pensate for error in the mandatory parts (i.e., the manda-
tory extensions) and for the accumulated error of its prede-
cessors is comparable to the amount of time it takes to sim-
ply execute all the shorter optional parts entirely to begin
with. Because neither effect is pronounced, the heuristics in
Steps 3 or 4 of the DIST-* algorithms can come into play
and possibly produce better schedules. For instance, for
small hi, oi, and ki in Experiment 1, DIST-M+ and DIST-M+-
ITERATIVE achieve the fraction of discarded work of 0.211
and perform better than the other algorithms.
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In general, whenever hi are small and oi are large, the
better approach is to schedule only the extended manda-
tory parts and then compensate for the accumulated error
by giving the last component task as much time as avail-
able. On the other hand, whenever the oi s or ki s are small,
the better approach is to schedule all the component tasks
precisely. The performance of the five heuristics seen in all
the experiments where the oi s or ki s are small supports this
hypothesis. The heuristic steps in the DIST-* algorithms
effectively “reconcile” these opposing approaches and de-
termine how much of each scheduling approach to use in
finding an assignment for each set of parameter values.

In summary, Algorithms DIST-M+ and DIST-M+-
ITERATIVE perform better than the other algorithms in
most cases; however in some cases, they do not. For exam-
ple, in Experiment 4 when hi, oi, and ki are small, DIST-M
performs better than both DIST-M+ and DIST-M+-
ITERATIVE because the locally optimal decisions made by
DIST-M+ and DIST-M+-ITERATIVE were not globally op-
timal. Finally, the results of this set of experiments do not
distinguish the performance of DIST-M+ and DIST-M+-
ITERATIVE.

6.2 Bimodal Distribution
Table 2 shows the results obtained in four representative
experiments where the parameters mi, hi, oi, and ki were
chosen from either uniform or bimodal distributions. Spe-
cifically, in each experiment, the parameters of each com-
ponent task were selected from either a uniform distribu-
tion in the range [0, 100) or a bimodal distribution in the
ranges [0, 10) or [90, 100). (The bimodal probability density
function is equal to 1/20 in the ranges [0, 10) and [90, 100)
and is equal to zero elsewhere.) For example, when the hi
parameters are chosen from the bimodal distribution and
mi, ki, and oi are chosen from the uniform distribution, we
label the appropriate column with “bimodal h.”

The results in Table 2 show that the different heuristics
used in the different DIST-* algorithms lead to a larger dif-
ference in performance when all or some of the task pa-
rameters are bimodally distributed. The reason is that Steps
1 and 2 do not often succeed for tasks with bimodally dis-
tributed parameters. For instance, while column 2 of Table
1 shows that when mi, oi, and ki are large and hi is small, all
five DIST-* algorithms achieve the same result; the corre-
sponding case of large mi, oi, and ki chosen from the same
uniform distribution but hi chosen from the bimodal distri-

TABLE 1
FRACTION OF DISCARDED WORK—UNIFORMLY DISTRIBUTED PARAMETERS



104 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  23,  NO.  2,  FEBRUARY  1997

bution (column 2 of Table 2) shows that the DIST-M+ and
DIST-M+-ITERATIVE algorithms produce better results
than the other algorithms. The bimodal mixture of small
and large hi makes the approaches taken by Step 1 and Step
2 less effective, thus allowing the heuristics of the DIST-M+

and DIST-M+-ITERATIVE algorithms to be applied more
frequently and leading to better results. That Steps 1 and 2
fail more frequently for tasks with bimodally distributed
parameters is demonstrated by the larger number of itali-
cized entries in Table 2.

As in Table 1 when oi or ki are small, Table 2 shows that
when oi or ki are bimodally distributed, the approach of
scheduling all the component tasks precisely is still a good
one. However, it is no longer as good as in the case when
all task parameters are uniformly distributed; this is due
mainly to the fact that fewer of the oi and ki parameters are
small in the bimodal distribution when compared to the
uniform distribution for a given composite task. Because
the sample of oi and ki parameters is no longer uniformly
distributed, the heuristics potentially have more opportu-
nities to tradeoff the processing times of the mandatory and
optional extensions of the component tasks, thus producing
better results.

In summary, as in Table 1, Algorithms DIST-M+ and
DIST-M+-ITERATIVE generally perform better than the
other algorithms when some parameters are bimodally
distributed. Furthermore, DIST-M+-ITERATIVE always
performed as well as or better than DIST-M+.

7 SUMMARY AND FUTURE WORK

In this paper, we extended the imprecise-computation
technique to account for input error and end-to-end timing
constraints and developed five heuristic scheduling algo-
rithms—DIST-M, DIST-M+, DIST-M+-ITERATIVE, DIST-O,
and DIST-O+—to minimize the output error of each com-
posite task in a real-time system. The algorithms all have
time complexity O(n). Although our initial intuition indi-
cated that the DIST-O and DIST-O+ algorithms would per-
form better when the processing times of mandatory exten-
sions were small compared to that of the optional exten-
sions, this turned out to be false. For the suite of simulation
experiments that were run to evaluate these algorithms, the
DIST-M algorithm and its variants always performed as
well as or better than either Algorithm DIST-O or Algo-
rithm DIST-O+. This makes sense because the optional ex-

TABLE 2
FRACTION OF DISCARDED WORK—BIMODAL AND UNIFORMLY DISTRIBUTED PARAMETERS



FENG AND LIU:  ALGORITHMS FOR SCHEDULING REAL-TIME TASKS WITH INPUT ERROR AND END-TO-END DEADLINES 105

tension does not have to be executed in any given schedule
whereas the mandatory extension must always be executed.
When an optional extension is “too long” (e.g., ki and/or oi
large), the algorithms choose not to schedule it. Further-
more, when the mandatory extensions are small (i.e., hi
and/or mi small), it is easier to compensate for the accu-
mulated error produced by earlier component tasks by
scheduling the last component task as much as possible.

As stated in Section 5, we could have used a linear-
programming solver to do time distribution for the special
case where the optional error-scaling factors are all zero.
However, when the linear-programming solutions are ap-
plied to the composite tasks in the experimental suite (all of
which have nonzero optional error-scaling factors), the so-
lution provided by the linear-programming solver gives us
an infeasible time distribution for every composite task
generated in our experiments.

There are many natural extensions of this work including
the generation of other precedence constraint graphs and
more accurate piecewise linear approximations of the exten-
sion functions. For example, we are evaluating the perform-
ance of our algorithms when the extension functions of com-
ponent tasks are concave and convex. Yet another extension
would make more of a global decision in assigning time to
the component tasks of a composite task. Specifically, when
the low-level algorithm is unable to schedule the component
tasks of a composite task within its allotted time, the low-
level algorithm could provide feedback to the high-level al-
gorithm about its additional processing-time needs. If the
high-level algorithm finds other composite tasks that do not
require the entirety of their assigned processing times, the
unschedulable composite task could borrow time from them
in order to become schedulable.
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